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SUMMARY 
The purpose of this paper is to examine the effects of using non-orthogonal boundary-fitted grids for the 
numerical solution of the shallow water equations. Two geometries with well known analytical solutions are 
introduced in order to investigate the accuracy of the numerical solutions. The results verify that a 
reasonable departure from orthogonality can be allowed when the rate of change of cell areas is kept 
sufficiently small (i.e. it is not necessary to create a strictly orthogonal grid when the grid is sufficiently 
smooth). 
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1. INTRODUCTION 

The development in computer technology has given rise to extraordinary progress in the area of 
computational fluid dynamics (CFD). During the last decade computers have been made larger 
and faster, thus making it possible to model more complex flow domains. One of the most 
important problems in CFD today is the creation of a suitable grid needed in the numerical 
algorithms (i.e. finite difference, finite volume, finite element). 

Many efforts have been made to develop methods for the automatic generation of grids for 
arbitrary flow regions, and as a result several automatic grid generation algorithms now exist 
involving both structured and unstructured grids. - Conventional Cartesian grids have been 
used and are still used to solve CFD problems. A disadvantage to this approach, however, is that 
the physical boundaries are represented in a ‘staircase fashion’. An alternative approach is to use 
unstructured grids, but such grids require much more computational effort. A new and very 
promising approach is to generate curvilinear structured grids that conform to the 
boundaries. 1-3 

Curvilinear grids are particularly used in the field of aerodynamics, i.e. for flow calculations 
around aircraft and space shuttles. In the field of hydraulics this numerical technique is still being 
developed, but it is believed that the use of such curvilinear grids will result in more accurate 
numerical solutions. The grids are in general non-orthogonal, because orthogonality puts many 
constraints on the grid. Besides, it is difficult to implement orthogonality in three dimensions. It 
can be shown under appropriate assumptions that reasonable deviations from orthogonality are 
of little concern when the rate of change of cell areas is not too large.’ This derivation is based on 
Taylor series expansion and on the assumption that the grid cells consist of parallel lines. It is the 
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aim of this paper to verify this statement by solving a flow problem using skewed grids. For this 
purpose the so-called shallow water equations are introduced. These equations describe the flow 
of an incompressible fluid subjected to gravity. In this paper the equations are solved for two 
geometries where analytical solutions exist. The analytical solutions are used to evaluate the 
accuracy of the numerical solutions. 

The paper is organized as follows. First the grid generation scheme is described briefly. In order 
to be able to use curvilinear grids it is necessary to transform the flow equations to curvilinear 
co-ordinates. The discretization and the numerical solution of the flow equations are then 
constructed in these curvilinear co-ordinates. These procedures are described in Sections 2-4. 
Finally, a comparison of numerical and analytical results is presented in Section 5. 

2. GRID GENERATION 

In this work one of the well established methods for generating boundary-fitted grids is adopted. 
This is based on the solution of an elliptic partial differential system (Reference 1, Chap. VI). In 
two dimensions this is given by 

From these equations the physical co-ordinates (x, y )  of the grid points, are generated from the 
specified curvilinear co-ordinates (5,  q). P and Q are control functions used to control the grid line 
spacings and orientations. In this work these functions are evaluated from the arc length 
distribution on the boundary and from the boundary c ~ r v a t u r e . ~  This evaluation ensures that the 
grid lines generally follow the boundary point distribution. 

3. TRANSFORMATION OF THE SHALLOW WATER EQUATIONS TO CURVILINEAR 

The shallow water equations describe the flow of a homogeneous incompressible fluid subjected 
to gravity. Neglecting the Coriolis force and the convective terms, these equations are given by5* 

CO-ORDINATES 

au ah _ -  
at - -g% 

au ah 
- -g- - _  

at a y  

(momentum), 

(momentum), 

(continuity), ah a ( m )  q o ~ )  
at ax ay _ -  

(3) 

where g denotes the acceleration due to gravity, u and u are the horizontal z-independent velocity 
components, h is the surface elevation from the equilibrium level and H is the still water depth (see 
Figure 1). 
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Figure 1.  Geometry for the shallow water equations 

In order to use the boundary-fitted grids, the flow equations have to be transformed to 
curvilinear co-ordinates. Details of this transformation can be found in References 7-9 and only 
the result will be quoted here: 

(momentum), 9 -+- (h,Y,-h,Y,) = 0 
at J 

(momentum), 9 -+- ( h s x t - h t x , )  = 0 
at J (4) 

(continuity). 
ah 1 
- + - C W ) t Y ,  - (OH )p, + (OH ),xy - (uH ) ,YCl = 0 
at J 

Here J denotes the Jacobian of the transformation given by 

J = ( 9 1 1 8 2 2 - - 9 1 2 ) 1 ’ 2 .  ( 5 )  

It should be noted that the equations which describe the boundary conditions have to be 
transformed as well. 

4. NUMERICAL PROCEDURE FOR THE SOLUTION OF THE SHALLOW WATER 
EQUATIONS 

The transformed equations are approximated by finite difference approximations. Here an 
explicit method is used (central differences in the spatial co-ordinates and forward differences for 
the time derivatives). The solution is obtained by using a staggered grid with velocities defined at 
the full grids and the surface elevation at the half-grids. The discretization and the numerical 
solution procedure are detailed in References 7 and 8. The solution is obtained by using the 
following steps. 

1. Specify the initial conditions to satisfy the analytical solution. 
2. Advance the surface elevation in time by using the continuity equations. 
3. Determine the velocities at the boundaries by using the boundary conditions. 
4. Determine the velocities in the flow field by using the momentum equations. 
5. Repeat steps 2-4 until the desired time. 
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5. TEST RESULTS 

5.1. Annular cylinders 

As a first example the shallow water equations are solved in the region between two concentric 
cylinders (see Figure 2). The vertical boundaries are here assumed to be solid walls. This requires 
that the normal velocity component vanishes. This boundary condition can be stated mathemat- 
ically and transformed to curvilinear co-ordinates. Details of this derivation can be found in 
Reference 7; only the result will be quoted here: 

where (- sin cp, cos cp) denotes a unit tangent vector to the boundary. This is given by 

(a2 + )iZ)1/2 ’ smcp = - 3 
(a2 + )i2)1/2 ’ coscp = (7) 

where the dot denotes differentiation with respect to the boundary curve parameter (in this case 
one of the curvilinear co-ordinates). 

The analytical solution can be found as a summation of different basic wave modes.5* ’ The 
modes are characterized by a mode number n that is equal to the number of waves in the 
azimuthal direction. With a proper choice of inner and outer radius, Neumann functions can be 

’ avoided.’ This yields 

J , ( k r , )  = J, (kr2)  = 0, (8) 
where J, denotes a Bessel function of the first kind of order n. In polar co-ordinates the wave 
modes are then given by 

(9) 

w2 = g H o k 2  (10) 

h(r, 8, t )  = h ,  J,(kr) cos (of + no), 
where 

Figure 2. Annular cylinder geometry 
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and h, is a constant. In the present work k is chosen to be k = 1; r ,  and r 2  are then determined 
from (7). 

The numerical results were obtained by using both orthogonal and skewed grids as well as 
uniform and non-uniform grids. All the calculations were done on grids with 119 grid lines in the 
radial direction and 25 grid lines in the azimuthal direction (in practice more grid lines would be 
needed in the azimuthal direction. The choice of 25 lines here is due to stability reasons for the 
explicit scheme on the non-uniform grids. In practice some kind of implicit scheme is preferable. 
The explicit scheme is only used here for the ease of coding.). 

As a first result it was noted that the accuracy of the numerical solution was independent of the 
location of the grid points; i.e. the solution was as accurate at points near the boundaries as at 
points in the field. Furthermore, the accuracy of the solution was independent of the skewness 
when uniform grids were used (consistent with the result obtained in Reference 1 with appropriate 
assumptions). 

Figures 3-5 show a comparison of the numerical solution with the analytical solution in the 
case n = 2 for 

1. a skewed, uniform grid, 
2. an orthogonal, non-uniform grid and 
3. a skewed, non-uniform grid. 

The skewed grids deviate far too much from orthogonality that would generally be allowed and 
rather serve as a worst case test, even though it is seen that accurate solutions are obtained on 
such grids. The larger phase error for the orthogonal, non-uniform grid compared to the skewed, 
uniform grid was found to be due to larger cell areas in the neighbourhood of that point where the 
solutions are shown. The amplitude error oscillates on the former grid, probably because of 
reduced smoothness. Finally, it is seen that the amplitude of the numerical solution on the 
skewed, non-uniform grid decreases with time. This amplitude decrease occurs at approximately 
the same rate in small and large cells. 

It should be noted that one gets qualitatively the same results for other choices of n. The only 
difference is that the solution errors increase with n (as noted in Reference 7 for the case of 
orthogonal uniform grids). Furthermore, the results presented above are only for sufficiently 
smooth grids (the rate of change of cell areas is not too large). Preliminary results suggest that a 
lack in smoothness is more serious than a reasonable deviation from orthogonality. 

5.2. Paraboloid 

The numerical solution of the shallow water equations using boundary-fitted grids have been 
obtained in a rotating parabolic container in the special case where the water surface is always 
plane.’ In this paper the equations are solved in a non-rotating parabolic container where the 
surface is not necessarily a plane. The depth profile in polar co-ordinates is given by (see Figure 6) 

H = H o [  1 - [ :I2]. 
The analytical solution to the problem is found in Reference 5 and is given as a double summation 
of wave modes characterized by the mode numbers n and s (s can be interpreted as the number of 
waves in the azimuthal direction). With specified values of n and s the solution is given by 

c o ~ ( s e ) c o ~ ~ t ,  m = s , s + 2 , .  . . , n - 2 ,  (12) 
m = s  
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Orthogonal; Non-uniform 
Mode: n=2, R1=6.71,R2=13.1 

Mode: n=2; Point:( 2 , lS)  
Grid: 119 x 25; Orthogonal Non-uniform 

03 2 
.4 
c) 

; 0 2  
* al 
aJ 0 1  
&I 
c 
m 

.c( 

3 0 0  

-0.  I 

-0.2 

-0.3 -I 
0 100 200 300 400 500 600 700 800 

Numerical 

- Analytical 

_ _ -  

183 

Number of t imes teps  

(b) 

Figure 4. (a) Orthogonal non-uniform grid. (b) Comparison of numerical and analytical solution for the annular cylinder 
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Skewness 28 deg; Non-uniform 
Mode: n=2, R 1 = 6 . 7 1 . R Z = 1 3 . 1  

Mode: n=2; Point:( 18,18) 
Grid: 1 1 9  x 25; Skewness: 28 deg; Non-uniform 
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Figure 5. (a) Non-uniform grid with a skewness of approximately 28". (b) Comparison of numerical and analytical 
solution for the annular cylinder 
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a 
Figure 6. Paraboloid geometry 

Figure 7. (a) Entire grid used in the parabolic test example. (b) Blow-up of a local region. Figures 8-1 1 show results at the 
points marked 1-4 
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where 

and the coefficients A, obey the recurrence relation 

(rn - n )  (m + n - 2) 
in2 - s 2  

A ,  = A m - 2 ,  m = s , s + 2 , .  . . , n - 2 .  

The boundary condition involved in the analytical solution is that the surface elevation is finite at 
the boundary (r = a). Numerically this is simply implemented by requiring that the momentum 
equations should be satisfied. 

The numerical solutions were generated by using a 73 x 73 grid as shown in Figure 7. The 
results showed that the numerical errors (both amplitude and phase) generally increased with the 
difference of the wave mode numbers ( n - s )  (i.e. with the complexity of the flow pattern). 
Figures 8-1 1 show typical results in the case s = 2, n = 6 (one of the more complex flow patterns). 
It is seen that a larger departure from orthogonality does not generate considerable errors (not 
even on the boundary) except near singular points (see Figure 11) where there is a shift in co- 
ordinate family on the boundary. In general the phase errors tend to increase with time while the 
amplitude errors oscillate. The oscillations are most clearly seen at points near the boundaries. 
Furthermore, the amplitude errors seem to be of larger concern than the phase errors. 

6. CONCLUSIONS 

In this paper the effects of using non-orthogonal boundary-fitted grids have been examined. For 
this purpose the shallow water equations have been solved for two geometries with well known 
analytical solutions. The numerical solutions have been compared with the analytical solutions 

Grid: 73 x 73. Mode: s=2, n=6. Point: (54,54). 

0 100 200 300 400 500 600 700 800 9001000 

Number of timesteps 

Figure 8. Comparison of numerical and analytical solution for the parabolic geometry at an interior point with local 
skewness of approximately 74" (point 1)  
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Grid: 73 x 73. Mode: s=2, n=6. Point: (62,SZ) 
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Figure 9. Comparison of numerical and analytical solution for the parabolic geometry at an interior point with local 
skewness of approximately 52" (point 2) 

Grid :  7 3  x 73. Mode: s=2, n=6. Point: (54,72) 
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Figure 10. Comparison of numerical and analytical solution for the parabolic geometry at a point near the boundary 
with local skewness of approximately 52" (point 3) 



188 P. NIELSEN AND 0. SKOVGAARD 

Grid: 73 x 73. Mode: s=Z. n=6. Point: (72.72) 
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Figure 11. Comparison of numerical and analytical solution for the parabolic geometry at a point near a special point 
(point 4) 

and the results show that reasonable departures from orthogonality only have small effects on the 
numerical accuracy when the grids are sufficiently smooth. However, it is more difficult to obtain 
accurate solutions near singular points on the boundaries. The numerical results verify the 
conclusion of the derivation given in Reference 1 with appropriate assumptions. 

The use of Cartesian grids will generally result in larger errors than the use of boundary-fitted 
grids (see Reference 8). This is also true for skewed grids when the deviation from orthogonality is 
reasonable. From an engineering point of view it is therefore recommended to use boundary- 
fitted grids that are as smooth as possible without serious deviation from orthogonality. 
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